Robotics: Integrated System Design

Fall 2009

[image: image1.jpg]


Lab Assignment 2a: 
Mobile Robotics Controls 
Objectives
You should learn:

1. how to download arrays of data from the XBC for graphing on a PC. This data will be used to help you understand what your control algorithm is doing and how it should be modified.

2. what the difference is between open and closed loop control.

3. why feedback control is necessary. What is wrong with open-loop control? What problems does closed-loop control overcome? What problems can it create?

4. how to tune a PID controller. You will implement a PID controller in IC and vary the PI, and I, and D gains and see how these gains affect the system response.

Overview
This lab involves one motor/encoder combination connected to the XBC. Shaft encoders or wheel encoders are a means of determining how far a shaft has turned. From this it is a simple calculation to determine how far your robot’s wheel has moved. This is typically used to keep track of how far your robot has moved for the purpose of navigation and localization. However, differential drive robots rarely, if ever, drive straight due to differences in the two motors that drive each wheel. Learning about controls is a first step in creating a robot that will drive straight and make accurate turns. 
Background Knowledge

Shaft Encoders
Your team will need to construct a shaft encoder. A shaft encoder counts the number of “clicks” a shaft has turned. From this you can easily calculate how much a wheel attached to the shaft has turned.  See the hand out “Speed and Distance Using Encoders”. You can also read more about encoders on pages 130 -135 of Robotics Exploration. 
Uploading Arrays    

For this lab you will need to upload an array from the XBC. When an executing program is paused or has finished, IC can upload the values stored in any global array via the serial port. This permits collecting and recording data for purposes such as experimentation or calibration. 

The IC upload array capability is accessed using the tools tab. When upload array is activated, it lists all globally declared arrays. When an array is selected, it is opened in a (modal) view window. The array can be copied to the clipboard, or saved to a TXT or CSV (comma separated values) file for import to analysis software. 

Motor Controls
IMPORTANT: DO NOT use any BEMF motor commands for this assignment. Use only the PWM commands: motor(port, speed).  Note that the speed input to the PWM commands is a percentage of the voltage to the motor. For example, a speed of 100 to a 9 volt motor is sending a voltage of 9, while a speed of 50 is sending a voltage of 4.5 .  
Part 1: Open-Loop Control
Start by creating an open-loop controller. Your code should use a for loop that executes for a predetermined number of iterations. For each step through the for loop your code should do the following:

· store the current system time as an element in an array

· read the current encoder value and store it as an element in an array

· set the motor voltage to some constant, store the voltage as an element in an array, and send the voltage to the motor

· this step may seem unnecessary for the open-loop case, but it will help make the open and closed-loop cases as similar as possible

When the for loop finishes executing, upload the data from the XBC to a PC and plot the voltage and encoder values vs. time. Do this for several different values for the open-loop voltage. How does the encoder value vs. time plot change as voltage change? 
Part 2: Open-Loop Position Control
Once you have the ability to run open-loop tests and download and plot the data, try to make the motor move from its starting position of 0 counts to a stopping position of 100 counts. You should do this by sending a constant voltage for a certain number of times through the for loop, i.e. if n > stop, set v = 0 where n is the index of the for loop, stop is an integer value you are using to control how far the motor moves, and v is the voltage sent to the motor. Change the value of stop until you get as close to 100 counts as possible. Now try to make the motor stop at exactly 200 counts.

Plot the voltage and encoder arrays vs. time, your voltage should be a pulse of a certain width that goes to zero after a certain point. After this point, the encoder value should stop changing and hold at a constant value.

You should find that while it is possible to stop the motor at whatever encoder value you want with the right choices of stop and v, this is tedious and may not be robust - if the amount of friction in the motor or between the motor and the floor where to change, you would need to recalibrate the height and/or width of your pulse.

Part 3: Proportional Feedback Control

Now that you have tried open-loop control to get the motor to move to a certain stopping position (i.e. stopping at a specific encoder value), you will feedback the encoder measurement to accomplish the same goal with less calibration and hassle. You should also find that this approach is more robust to system changes.

For each step through your for loop, add a couple of additional lines:

· define an error value that is the difference between the actual encoder value and the desired stopping point

· the motor voltage will now be a proportional gain times the error

· save the error and voltage values in arrays and plot them at the end of the test

Run tests for different values of the proportional gain, plot and compare the results.
Part 4: Proportional plus Integral Control

You should have found that proportional control can easily get your system to stop near the desired position if you choose the value of the proportional gain carefully. But you probably also found that getting to exactly the specified stopping point can be tricky. Integral control will help eliminate this steady-state error.

You need to do just a couple of things to add an integral term to your controller:

· Create an esum variable that is the sum of all the error values up to the current time. Each time through the for loop add the current error value to esum.

· The voltage to the motor will be P*e + I*esum. Start with a fairly small I (0.001) and work 
Plot and compare with proportional control results.
Demonstration

· Demonstrations will be in class on September 21th during class in EB 2029.

· Your team will demonstrate the implementation of open-loop control, P control and PI control. For P and PI control you will be given the number of times your wheel must turn, so this should be input into your program. Your grade for these will be based on how close your code comes to the correct number of turns. This will be an averaged over 3 runs. 
Hand-in

· A lab report describing your team’s encoder design and results of the testing as indicated in each part.

· It should also include the appropriate graphs and description of results from running each control method. 
· It should also include source code.
· Team Meeting notes (as described in the General Lab Philosophy)

· Due date: September 25th  at 11:59 pm. Soft copies must be placed in the class drop box.

Evaluation

· 45 points: Demonstration of the 3 different controls 
· 45 points: Lab report

· 10 points: Team Meeting Notes.
